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Abstract. We have investigated the aitical behaviour of site-disordered king systems 
over a large range of dilution (0.6 6 p < 1.0) investing about 1015 single spin flips 
with conventional local dymmim. Critical temperatures have been determined with high 
precision using the cumulant method. The finitesize simulations lead to concentration; 
dependent exponents which seem to violate universality. We show that the concentration 
dependence is induced by a aosswer phenomenon which govems a large interval of 
the Critical region. We find that the scaling functions of systems with different disorder 
comwge asymptotically to universal behaviour consistent with the fixed point of weak 
disorder. 

_ _  

The influence of disorder on critical behaviour has been in dispute for a long 
time. Early renormalization group (RG) calculations based on weak randomness 
11-31 have shown that a change of the universality class depends on the order 
parameter dimension n of the system. These results have confirmed the heuristic 
Harris criterion [4]. In more general works, it has been shown [5] that the naive 
form of this stability criterion ('stability depends on the exponent cy of the pure 
system') applies only to simple energy-like coupling of disorder [l-31. Other sorts 
of disorder like anisotropic coupling [5,6], random-field coupling [7], extended [8,9] 
and correlated defects [lo] have been investigated. 

In this letter we report simulations of the Ising model with classical site- 
disorder 11-31. In the field-theoretic formulation sitedisorder introduces a new 
spin4perator into the problem. A new stable fiied point with new exponents has 
been calculated for king systems (n  = 1). whereas Heisenberg systems (n = 3) are 
uneffected by this kind of disorder. The identity of the crossover exponent 6 with 
the exponent cy of the pure system has been shown to all orders in perturbation 
series [11,12]. Due to the O(C'/~) random fixed point, critical exponents for the 
random Ising model are hard to calculate in comparison with the pure case 1131. 
The two-loop-order field-theoretic renormalization [14] has been extended recently 
up to four-loop order 11.51, leading to reliable results in three dimensions: p = 0.348, 
y = 1.321, U = 0.671 and q = 0.032 for the random king model. 

Since the crossover exponent (4  = cy = 0.11) [16] is very small, it is expected 
that random exponents should be seen only vety near the critical point in a region 
t << t,. The crossover temperature t ,  - (1 - p)'/+ on the reduced temperature scale 
1 = (T/T,(p)  - 1) depends on the concentration p of spins. A finite-size analysis 

0305-4470,93D60333+07%07.50 0 1993 IOP Publishing Ltd L333 



L334 Letter to the Editor 

is consequently expected to show random Ising exponents only for large systems 
L > L, with t, - (1- P ) - ~ / + .  Smaller lattices (L < L,) should be dominated by 
the pure Ising exponents. We point out that a calculation of the crossover between 
the two fiied points has not been canied out so far. 

The basic feature of the theoretical approaches to disorder [1-3,11,13,15] is 
the assumptian of weak disorder. "hjs allows for a translational-invariant effective 
Hamiltonian of the disordered system. In this letter we address the open problem 
of what this restriction means for real systems. A closely related question 1131 is the 
relevance of the percolation tixed point [17,18] in the renormalization scenario of 
disordered systems. Although the percolation fixed point is unstable 1191, it may be 
relevant for strongly diluted systems in the non-asymptotic regime. It has been stated 
earlier [I31 that a complete theory for disorder phenomena in critical systems must 
include all three k e d  points. 

The simulation of djsordered spin systems has long been hampered by strongly 
increasing relaxation times and the need to perform configurational averages 1201. 
Now, precise Monte Carlo results are possible by new cluster algorithms 121,221 and 
refined vectorized implementations of local algorithms [23]. We have invested about 
lou single spin tlips for the finiteaize simulation of disordered king systems in the 
concentration range p > 0.6. This is more than has ever been done before in a 
classical statistical problem. Our fast vectorized Metropolis dynamics was used which 
yields a speed of 335 x lo6 Monte Carlo steps (Ma) per second Cor the purc Ising 
model and 215 x lo6 Mcs/second for the sitediluted model [U]. Despite this speed, 
the project needed ahout 2000 cpu-hours on the m y  Y-MP. 

As a preliminary step, we have invested a large amount of computing time 
(4 x IOl4 Mcs/spin) for the determination of the critical temperatures T,!p). The 
cumulant method [24] has been applied to calculate T,(p) by the intersection of the 
fourth-order cumulants 

of the magnetization density M .  To obtain highly resolved data, simulations were 
done in small temperature intervals (It1 < around the critical temperature 
T,(p) at 8-16 equidistant temperatures. In each run, we sampled 1-2 x lo6 ~cs/Spin 
after an equilibration of 20000-40000 ~cs/spin, which corresponds to more than 
20 T ~ , , ~ ~ ~ ,  where T ~ , , ~ ~ ,  = is-", @LMl(t)dt is the integrated relaxation time [25]. 
For each concentrahon p, we averaged the data over 16-32 configurations to obtain 
cumulants with an error of (1-2) x As a typical example of the cumulant 
analysis, figure 1 shows the intersection of cumulants with a concentration p = 0.8 
and linear sizes L E [20-601. In contrast to the two-dimensional King system which 
suffers from severe fim-te-size corrections (L-dependence of the intersection [24]) even 
for large lattices ( L  E 250) [26], we find that these corrections are below our small 
statistical errors in three dimensions. For all concentrations we determined the critical 
temperatures T,(p) with a relative error AT,/T, U (table I). This error was 
calculated from the variance of the intersection point using the whole set of cumulant 
data and its subsets. The critical temperature of the pure system is well known 
127-291 and it is contirmed here with a small relative error of AT,/T, = 5 x 
using only a small amount of data. Our result for the concentration p = 0.8 agrees 
very well with the critical temperature T,(p  = 0.8) = 3.4991(5) of Wang et al [30] 
who have determined T, from the extrapolated susceptibility maximum. 
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Flgnre 1. Cumulant U (1) of site-disordered king systems with a concentration p = 0.8. 
The critical temperature T,(p) has been determined from the intersection of U ( L , T ) .  
An average over up to 32 configurations for all temperatures and run lengths of 0(106) 
MWSpin are necessary to reduce the error of U to 1-2 x 

Table 1. Summary of the shaightfomard analysis of OUI finite-size dah. Critical ellponent 
ratios have been calculated by a fit of the data in the interval L E [u),60] to their 
finite-size singularily. Exponents have been derived via the exponent relation (3) which 
permits one to obtain U at the mitical point T,. The exponent a has been calculated 
from exponent relations. 

P T, B l v  -flu </U 

1.0 4.5115(1) 0.53(1) 1.95(2) 1.08(1) 
0.95 4.2622(4) 0.49(2) 200(3) 1.07(2) 
0.90 4.0108(5) 0.48(2) 202(3) 1.05(2) 

0.69 24220(6) 0.45(2) 209(3) 0.94(2) 
0.80 3.4992(5) 0.51(2) 1 . 9 ~ 3 )  o s q q  

P P -I c U Di 

1.0 0.33(1) 1.22(2) 0.67(1) 0.624(10) 0.13(1) 
0.95 031(2) 1.28(3) O.SS(2) 0.64(2) 0.08(3) 
0.90 0.31(2) 131(3) 0.68(2) 0.65(2) 0.05(3) 
0.80 0.35(2) 1.35(3) 0.66(2) 0.68(2) -0.03(3) 
0.60 0.33(2) 1.51(3) 0.67(2) 0.72(2) -0.17(3) 

Our finite-size simulations have been performed at the critical temperatures T J p )  
determined above, measuring the usual magnetic and caloric properties (311. In 
addition, we have investigated the magnetization-energy (/MI-E) correlation function 

rT2 = N((IMIE) - (IMI)(E)) (2) 

which is the temperature derivative of the spontaneous magnetization. N = pL3 is 
the number of spins in the system. The finite-size divergence of r is described by 
the critical exponent 

c / u  = I/. - p / u  (3) 

at the Critical point [31]. 
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We have carried out a very detailed error analysis which will be presented 
elsewhere [32]. The main murce of statistical errors of thermodynamic observables 
results from the variance in configuration space which is considerably larger than 
the usual statistical errors from finite Monte Carlo sampling with typical run lengths 
of 1-3 x lo6 ~cs/Spin. We have therefore averaged all data over several hundred 
configurations for each concentration [32] to reduce the configurational errors. In 
addition, we have calculated the possible systematic deviation of a thermodynamic 
observable from its true value at the true value of T, which may result from the error 
of T,(p) as determined from the cumulant analysis above. The resulting total error 
is included in table 1, which summarizes our results for exponent ratios determined 
from usual finite-size scaling with lattice sizes L E [20,60]. From these exponent 
ratios, !he exponents have been calculated via the exponent relation (3). We point 
out that this method of calculating the exponent v requires only simulations at T,. 

The concentration dependence of measured exponents (table 1) apparently 
violates the expected universality of critical behaviour. However, it should be 
remembered that a crossover between the pure (P) and the weakly random (R) fixed 
point is expected from the renormalization group. In a finite-size scaling analysis this 
crossover leads to L-  and pdependent effective exponents [32]. The concentration 
dependence of the exponents (table 1) for p 2 0.8 may be interpreted as a crossover 
between the pure and the random fiied point. But the large exponents y and v for 
p = 0.6 and p = 0.5 [32] exceed the difference between the pure and the random 
fixed point by a factor 3. Although the crossover between both fixed points has 
not been calculated explicitly, it is unreasonable to trace back such a large non- 
monotonous effect to a simple two-fied-point crossover. We therefore conclude that 
the crossover in systems with strong disorder is more complex than expected. 

We have analysed our simulational data with respect to the expected crossover 
between the pure and the random fixed point [l-3,13, U]. At both fixed points, 
the basic scaling exponents y; and & of the magnetic field are equal within the 
reliability of Pad&-approximants [15,l6]. Thus, y/v = 2yH - d should not change 
remarkably with disorder. This expectation is satisfied within the errors by our results 
for low disorder (table l), but it is not fulfilled at the concentration p = 0.6 which 
shows a definitely negative value of v. This is again an indication of a crossover 
phenomenon and it shows that the crossover behaviour of strongly disordered systems 
is not described just by fixed points P and R. 

The basic thermal exponent yt is more interesting since it has distinctly different 
values y! = 1.60 and yy = 1.50 at the fiied points [1.5,16]. This permitj averification 
of both exponents from the simulation. We extracted the thermaI exponent yt = l / v  
by means of the function 

r Ts-- B M I  = T O - .  C P M  
A4 at x (4) 

It is easily verified from the finite-size scaling behaviour of M ,  that I' depends only 
on y t .  The scaling function L-YtY(L)  has been calculated from our data and it 
is plotted for all concentrations in scaling form (figure 2) with the exponents yp 
for p = 1.0 and with yp for p < 1.0. This figure contains the central result of 
this paper. It shows that disordered systems have a complex crossover before they 
converge to their asymptotic behaviour, which is consistent with the fined point of 
weakly disordered Ising systems. 
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Figure 2. The scaling fundion L-Y:T(L) is plotted as a function of system size L with 
the corresponding asymptotic exponents yt = yr(p = 1.0) and yt = yf (p < 1.0). 
The figure shows that a complex crossover occurs in spin systems with general disorder. 
Statistical error ban of ~e scaling function are included. Small and large disorder 
leads to a different approach to the universal asymptotic behaviour. For interpretational 
purpose (see text), we have added the expected results of a future simulation sli@tly 
above the percolation concentration pr, scaled with the permlation exponent yt = y y .  

The pure system reaches its finite-size limit L-yfYP(T = T,, L - 00) already at 
low system sizes. Scaling corrections to asymptotic scaling are small and are therefore 
not visible within the resolution of figure 2. Disordered systems (p  # 1.0) approach 
a different asymptotic ( L  - a) value L-yfTR (T = T,, L -+ a). We stress that 
both values are universal since they are limits of a universal scaling function. 

Figure 2 shows that the way disordered systems approach asymptotic behaviour 
depends very much on the degree of disorder. Weakly random systems (p > 0.8) 
approach the asymptotic limit smoothly from below whereas strongly random systems 
(p  < 0.8) cross over from the opposite direction. In both cases, the asymptotic 
behaviour is reached at lattice sizes L > L, (p )  with the length scale L J p )  depending 
on the concentration. We denote L J p )  the length scale of frozen disorder. 

It is obviously not possible to make quantitive predictions about the functional 
pdependence of L,(p) .  One can roughly estimate L , ( p )  to be about 50 for the 
weakly disordered systems with concentrations p = 0.95 and p = 0.9. The strongly 
random system with p = 0.6 does not really reach the asymptotic behaviour in 
our simulation up to L = 60, but the approach is nevertheless obvious in the 
scaling plot (figure 2). Rough extrapolation of T(L) for p = 0.6 to larger 
system sizes L leads to the expectation that the asymptotic behaviour is reached 
for L 2 L, N 100-150. We conclude that the length scale L , ( p )  strongly increases 
with dilution. Since the percolation fixed point becomes increasingly stable when 
the percolation concentration p ,  = 0.31 is approached, the length scale L,(p)  must 
diverge at p,. Thus, we expect that a future simulation in the limit pC+ leads to the 
constant scaling function L-YyY(L)  indicated in figure 2 by open symbols. Here, 
yflc = l/vpc is the thermal exponent of percolation [27J The universal value of the 
scaling function in this limit remains to be determined. 
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Accidentally, the crossover function L-Y:T( L) changes the sign of its derivative 
at a concentration p N 0.8 so that the asymptotic range appears to be reached already 
for small system sizes. This effect explains why critical exponents of earlier Monte 
Carlo simulations [30,31] at this concentration shaved up the theoretical exponents 
of the weakly random fixed point (R). 

The crossover found in this work explains earlier reported simulational 
results [30,3€] which apparently displayed non-universal behaviour of disordered 
systems. Experimental investigations of diluted magnets [33-34]f have also 
found concentration-dependent exponents which are now explained as a crossover 
phenomenon. We have shown that a simple two-fixed-point scenario is not the last 
word if general disorder is studied. While a simpIe crossover between the pure and 
the weakly random fixed point possibly accounts for the behaviour of systems above 
p N 0.8, more strongly disordered systems necessitate a more refined analysis by an 
appropriate treatment of their percolative, i.e. structural effects which are relevant 
for non-asymptotic correlation lengths and system sizes, respectively. To this end, it is 
necessary to explicitly include the non-translational invariance of quenched disordered 
systems into theory. The corresponding operators have originally been eliminated self- 
consistently in the weak disorder theory [l]. Including them and taking additional 
frozen length scales L J p )  into account will lead to an interestingly higher complexity 
of the ~ ~ a n a l y ~ i s .  

The influence of non-translational invariance of frozen disorder on the crossover is 
easily recognized from the qualitative behaviour of thermal and magnetic fluctuations 
in the crossover region 131,321. The structural analysis of random configurations 
shows that there are large clusters of spins with a strong inrrucoupling. The 
inrercoupling of these clusters is comparatively weak. This structure allows for 
large magnetic fluctuations and small energetic fluctuations in the region where the 
correlation length is smaller or comparable to the length scale of these configurational 
clusters. From this observation we expect that the length scale of frozen disorder 
L , ( p )  introduced above has a geometric interpretation in terms of geometrical 
clusters. However, a reasonable definition of clusters is a still a matter of discussion 
because is intimately related to the successful treatment of the subject. 

We thank the HLRZ for the continuous supply of computing time on the CRAY YMP. 
This work was supported the Sonderforschungsbereich SFB 166 ‘Disorder and Large 
Fluctuations’. 
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